
US05CBCA25

Object Oriented Programming – III

UNIT - I



1. Database
• Collection of data

2. DBMS
• Database Management System
• Storing and organizing data

3. SQL
• Relational database
• Structured Query Language

4. JDBC
• Java Database Connectivity
• JDBC driver

Introduction



• JDBC (Java Database Connectivity) is a java API which enables
the java programs to execute SQL statements.

• It is an application programming interface that defines how a
java programmer can access the database in tabular format
from Java code using a set of standard interfaces and classes
written in the Java programming language.

• The Java application programming interface provides a
mechanism for dynamically loading the correct Java packages
and drivers and registering them with the JDBC Driver Manager
that is used as a connection factory for creating JDBC connections
which supports creating and executing statements such as SQL
INSERT, UPDATE and DELETE.

1.1 Introduction to JDBC



• In short JDBC helps the programmers to write java

applications that manage these three programming activities:

1. It helps us to connect to a data source, like a database.

2. It helps us in sending queries and updating statements to the

database

3. Retrieving and processing the results received from the database

in terms of answering query.

Introduction to JDBC





• Application Program Interface

• A set of routines, protocols, and tools for building software

applications.

• JDBC is an API, which is used in java programming for interacting

with database.

What is API ?



1. The JDBC API: The JDBC API provides programmatic access to
relational data from the Java programming language.

2. JDBC Driver Manager: The JDBC DriverManager class defines
objects which can connect Java applications to a JDBC driver.

3. JDBC Test Suite — The JDBC driver test suite helps you to
determine that JDBC drivers will run your program

4. JDBC-ODBC Bridge — The Java Software bridge provides JDBC
access via ODBC drivers.

JDBC Components



1.2 JDBC Architecture



JDBC two-tier Architecture



JDBC three-tier Architecture



• Type1 (JDBC-ODBC Driver)

• Type 2 (Native Code Driver)

• Type 3 (Java Protocol)

• Type 4 (Database Protocol)

Types of JDBC Driver



Depends on support for ODBC

• Not portable

• Translate JDBC calls into ODBC calls and use Windows ODBC built in

Drivers.

• ODBC must be set up on every client.

• for server side servlets ODBC must be set up on web server

• driver sun.jdbc.odbc.JdbcOdbc provided by JavaSoft with JDK

• No support from JDK 1.8 (Java 8)

• E.g. MS Access

JDBC Driver: Type 1 (JDBC-ODBC Driver)



Depends on support for ODBC

• Not portable

• Translate JDBC calls into ODBC calls and use Windows ODBC built in

Drivers

• ODBC must be set up on every client

• for server side servlets ODBC must be set up on web server

• driver sun.jdbc.odbc.JdbcOdbc provided by JavaSoft with JDK

• No support from JDK 1.8 (Java 8)

• E.g. MS Access

JDBC Driver: Type 1 (JDBC-ODBC Driver)



Advantages :

• Allow to communicate with all database supported by ODBC driver

• It is vendor independent driver

Disadvantages:

• Due to large number of translations, execution speed is decreased

• Dependent on the ODBC driver

• ODBC binary code or ODBC client library to be installed in every

client machine.

• Uses java native interface to make ODBC call

Type1 driver is not used in production environment. It can only be used,

when database doesn’t have any other JDBC driver implementation.

JDBC Driver: Type 1 (JDBC-ODBC Driver)



• JDBC API calls are converted into native API calls, which are unique

to the database.

• These drivers are typically provided by the database vendors and

used in the same manner as the JDBC-ODBC Bridge.

• Native code Driver are usually written in C, C++.

• The vendor-specific driver must be installed on each client

machine.

• Type 2 Driver is suitable to use with server side applications.

• E.g. Oracle OCI driver, Weblogic OCI driver, Type2 for Sybase

JDBC Driver: Type 2 (Native Code Driver)



• Advantages

• As there is no implementation of JDBC-ODBC bridge, it may be

considerably faster than a Type 1 driver.

• Disadvantages

• The vendor client library needs to be installed on the client

machine.

• This driver is platform dependent.

• This driver supports all java applications except applets.

• It may increase cost of application, if it needs to run on different

platform(since we may require buying the native libraries for all

of the platform).

JDBC Driver: Type 2 (Native Code Driver)



• Pure Java Driver

• Depends on Middleware server

• Can interface to multiple databases – Not vendor specific.

• Follows a three-tier communication approach.

• The JDBC clients use standard network sockets to communicate with

a middleware application server.

• The socket information is then translated by the middleware

application server into the call format required by the DBMS.

• This kind of driver is extremely flexible, since it requires no code

installed on the client and a single driver can actually provide access

to multiple databases.

JDBC Driver: Type 3 (Java Protocol)



• Advantages
• Since the communication between client and the middleware

server is database independent, there is no need for the database
vendor library on the client.

• A single driver can handle any database, provided the middleware
supports it.

• We can switch from one database to other without changing the
client-side driver class, by just changing configurations of
middleware server.

• E.g.: IDS Driver, Weblogic RMI Driver
• Disadvantages
• Compared to Type 2 drivers, Type 3 drivers are slow due to

increased number of network calls.
• Requires database-specific coding to be done in the middle tier.
• The middleware layer added may result in additional latency, but is

typically overcome by using better middleware services.

JDBC Driver: Type 3 (Java Protocol)



• It is known as the Direct to Database Pure Java Driver

• Need to download a newdriver for each database engine e.g. Oracle,

MySQL

• Type 4 driver, a pure Java-based driver communicates directly with

the vendor’s database through socket connection.

• This kind of driver is extremely flexible, you don’t need to install

special software on the client or server.

• Such drivers are implemented by DBMS vendors.

JDBC Driver: Type 4 (Database Protocol)



Advantages
• Completely implemented in Java to achieve platform independence.
• No native libraries are required to be installed in client machine.
• These drivers don’t translate the requests into an intermediary

format (such as ODBC).
• Secure to use since, it uses database server specific protocol.
• The client application connects directly to the database server.
• No translation or middleware layers are used, improving

performance.
• The JVM manages all the aspects of the application-to-database

connection.
Disadvantage
• This Driver uses database specific protocol and it is DBMS vendor

dependent.

JDBC Driver: Type 4 (Database Protocol)



• If you are accessing one type of database such as MySql, Oracle,

Sybase or IBM etc., the preferred driver type is 4.

• If your Java application is accessing multiple types of databases at

the same time, type 3 is the preferred driver.

• Type 2 drivers are useful in situations, where a type 3 or type 4

driver is not available yet for your database.

• The type 1 driver is not considered a deployment-level driver, and is

typically used for development and testing purposes only.

Which driver should be used?



JDBC with different RDBMS



Before you can create a java jdbc connection to the database,
you must first import the java.sql package.
import java.sql.*; The star ( * ) indicates that all of the classes in
the package java.sql are to be imported.
There are following six steps involved in building a JDBC application:

1). Import the packages: Requires that you include the packages
containing the JDBC classes needed for database programming. Most
often, using import java.sql.* will suffice.

2). Register the JDBC driver: Requires that you initialize driver
so you can open a communications channel with the database.

3). Open a connection: Requires using the DriverManager
.getConnection() method to create a Connection object, which
represents a physical connection with the database.

1.3 Java Database Connectivity Steps



4). Execute a query: Requires using an object of type Statement
for building and submitting an SQL statement to the database.

5). Extract data from result set: Requires that you use
the appropriate ResultSet.getXXX() method to retrieve the data from the
result set.

6). Clean up the environment: Requires explicitly closing all
database resources versus relying on the JVM's garbage collection.

Java Database Connectivity Steps



1.3.1 JDBC Connection
• The JDBC DriverManager class defines objects which can

connect Java applications to a JDBC driver. DriverManager is
considered the backbone of JDBC architecture.

• DriverManager class manages the JDBC drivers that are installed
on the system.

• Its getConnection() method is used to establish a connection to a
database. It uses a username, password, and a jdbc url to
establish a connection to the database and returns a connection
object. A jdbc Connection represents a session/connection with
a specific database.

• With the context of a Connection, SQL, PL/SQL statements are
executed and results are returned. An application can have
one or more connections with a single database, or it can
have many connections with different databases. A Connection
object provides metadata i.e. information about the database,
tables, and fields. It also contains methods to deal with transactions.



1.3.1 JDBC Connection
• JDBC URL Example:: jdbc: <subprotocol>: <subname>

• Each driver has its own subprotocol
• Each subprotocol has its own syntax for the source. We’re using

the jdbc odbc subprotocol, so the DriverManager knows to use
the sun.jdbc.odbc.JdbcOdbcDriver.

Try
{

Connection con =DriverManager. 
getConnection(url,”loginName”,”Password”) 

}
catch( SQLException x ){

System.out.println( “Couldn’t get connection!” );
}



1.3.2 Types of Statements
• Once a connection is obtained we can interact with the

database. Connection interface defines methods for interacting
with the database via the established connection. To execute
SQL statements, you need to instantiate a Statement object
from your connection object by using the createStatement()
method.
• Statement st = con.createStatement();

• A statement object is used to send and execute SQL statements to a
database.

• Three kinds of Statements
• They also define methods that help bridge data type

differences between Java and SQL data types used in a database.



1.3.2 Types of Statements



1.4 Execution Query
• Statement interface defines methods that are used to interact

with database via the execution of SQL statements. The
Statement class has three methods for executing
statements:

• executeQuery(), executeUpdate(), and execute().
• For a SELECT statement, the method to use is executeQuery().
• For statements that create or modify tables, the method to use

is executeUpdate().
• Note: Statements that create a table, alter a table, or drop a

table are all examples of DDL statements and are executed
with the method executeUpdate.

• execute() executes an SQL statement that is written as String
object.

• Example :
• ResultSet rs=stmt.executeQuery("select * from student");
• stmt.executeUpdate(“insert into student values(1,’abc’)”);



1.4 ResultSet
• The SQL statements that read data from a database query

return the data in a result set. The SELECT statement is the
standard way to select rows from a database and view them in a
result set.

• A ResultSet object maintains a cursor that points to the current row
in the result set. The term "result set" refers to the row and column
data contained in a ResultSet object.

• The next() method is used to successively step through the rows of
the tabular results.



1.4 Types of ResultSet



JDBC Example



1.5 List Interface



1.5 List Interface

• List in Java provides the facility to maintain the ordered collection. It

contains the index-based methods to insert, update, delete and search

the elements. It can have the duplicate elements also. We can also

store the null elements in the list.

• The List interface is found in the java.util package and inherits the

Collection interface. It is a factory of ListIterator interface. Through the

ListIterator, we can iterate the list in forward and backward directions.

The implementation classes of List interface are ArrayList, LinkedList,

Stack and Vector. The ArrayList and LinkedList are widely used in Java

programming.



1.5 Operation on List
• List Interface extends Collection, hence it supports all the operations

of Collection Interface, along with following additional operations:
1. Positional Access: List allows add, remove, get and set operations

based on numerical positions of elements in List. List provides
following methods for these operations:



1.5 Operation on List
2. Search: List provides methods to search element and returns its

numeric position. Following two methods are supported by List for
this operation:

3. Iteration: ListIterator(extends Iterator) is used to iterate over
List element. List iterator is bidirectional iterator. For more details
about ListIterator refer Iterators in Java.

4. Range-view: List Interface provides a method to get the List view
of the portion of given List between two indices.



1.5 ArrayList Class
• Java ArrayList class uses a dynamic array for storing the

elements. It inherits AbstractList class and implements List
interface.
• The important points about Java ArrayList class are:

• Java ArrayList class can contain duplicate elements.
• Java ArrayList class maintains insertion order.
• Java ArrayList class is non synchronized.
• Java ArrayList allows random access because array works at the

index basis.
• In ArrayList class, manipulation is slow because a lot of shifting

needs to occur if any element is removed from the array list.



1.5 ArrayList Class
• Creating ArrayList

//Creating a List of type String using ArrayList
List<String> list=new ArrayList<String>();

//Creating a List of type Integer using ArrayList
List<Integer> list=new ArrayList<Integer>();



1.5 ArrayList Class
/* This program is for ArrayList Example*/
import java.util.*;
public class ArrayListExample {
public static void main(String args[])
{

ArrayList<String> list=new ArrayList<String>(); //Creating
arraylist
list.add("Hero"); //Adding object in arraylist
list.add("Honda");
list.add("Bajaj");
System.out.println(list); //Invoking arraylist object
//Iterating the List element using for-each loop
System.out.println("Using for method");
for(String byke:list)

System.out.println(byke);



1.5 ArrayList Class
//adding element in specific position
System.out.println("Using add() method for specific position");
list.add(1,"yamaha");
System.out.println(list);

//Using get method to get ArrayList elements
System.out.println("Using get() method");
System.out.println(list.get(1));

//Using set method to set ArrayList elements
System.out.println("Using set() method");
// set() replaces the "Enfield" as 2nd element.
list.set(1,"Enfield");
System.out.println(list);



1.5 ArrayList Class
//sorting elements
System.out.println("Using sort() method");
Collections.sort(list);
System.out.println(list);

//removing last element
System.out.println("Using remove() method");
list.remove(2);
System.out.println(list);

//removing all element
System.out.println("Using clear() method");
list.clear();
System.out.println(list);

}
}



1.5 ArrayList v/s Vector



1.5 Vector

• Vector is like the dynamic array which can grow or shrink its size.

Unlike array, we can store n-number of elements in it as there is no

size limit. It is a part of Java Collection framework since Java 1.2. It is

found in the java.util package and implements the List interface, so we

can use all the methods of List interface here.

• It is recommended to use the Vector class in the thread-safe

implementation only. If you don't need to use the thread-safe

implementation, you should use the ArrayList, the ArrayList will

perform better in such case.



1.5 Vector

• vector() - It constructs an empty vector with the default size as 10.

• vector(int initialCapacity) - It constructs an empty vector with the

specified initial capacity and with its capacity increment equal to zero.

• vector(int initialCapacity, int capacityIncrement) - It constructs an

empty vector with the specified initial capacity and capacity

increment.

• Vector( Collection<? extends E> c) - It constructs a vector that contains

the elements of a collection c.



1.5 Vector
add() It is used to append the specified element in the given vector.

addAll() It is used to append all of the elements in the specified collection to the end 
of this Vector.

addElement() It is used to append the specified component to the end of this vector. It 
increases the vector size by one.

capacity() It is used to get the current capacity of this vector.

clear() It is used to delete all of the elements from this vector.

contains() It returns true if the vector contains the specified element.

elementAt() It is used to get the component at the specified index.

indexOf()
It is used to get the index of the first occurrence of the specified element 

in the vector. It returns -1 if the vector does not contain the element.

get() It is used to get an element at the specified position in the vector.

set() It is used to replace the element at the specified position in the vector with 
the specified element.

remove() It is used to remove the specified element from the vector. If the vector does 
not contain the element, it is unchanged.



1.5 Vector
import java.util.*;
public class VectorClassExample {

public static void main(String args[])
{

//Create an empty vector with initial capacity 4
Vector<String> vec = new Vector<String>(4);
//Adding elements to a vector
vec.add("Tiger");
vec.add("Lion");
vec.add("Dog");
vec.add("Elephant");
//Check size and capacity
System.out.println("Size is: "+vec.size());
System.out.println("Default capacity is: "+vec.capacity());



1.5 Vector
//Display Vector elements

System.out.println("Vector element is: "+vec);
vec.addElement("Rat");
vec.addElement("Cat");
vec.addElement("Deer");
//Again check size and capacity after two insertions
System.out.println("Size after addition: "+vec.size());
System.out.println("Capacity after addition is: "+vec.capacity());
//Display Vector elements again
System.out.println("Elements are: "+vec);
//Checking if Tiger is present or not in this vector
if(vec.contains("Rat"))
{ System.out.println("Rat is present at the index "
+vec.indexOf("Rat")); }

else {
System.out.println("Tiger is not present in the list."); }



1.5 Vector
//Get the first element

System.out.println("The first animal of the vector is = "+vec.firstElement());
//Get the last element
System.out.println("The last animal of the vector is = "+vec.lastElement());

System.out.println("get method = "+vec.get(4));
//set the 5th element
vec.set(4,"Tiger");
System.out.println("After using set method = "+vec);
//remove first occurance of element
vec.remove("Tiger");
System.out.println("After using remove method"+vec);
//remove specified index of element
vec.remove(2);
System.out.println("After using remove with specified index method"+vec);

}
}



1.5 Iterator
import java.util.*;
public class IteratorExample
{ public static void main(String args[])

{
ArrayList<String> list=new ArrayList<String>();//Creating arraylist
list.add("Ravi");//Adding object in arraylist
list.add("Vijay");
list.add("Ravi");
list.add("Ajay");

//Traversing list through for-each loop
System.out.println("Using for loop");
for(String name:list)

System.out.println(name);
//Traversing list through Iterator
System.out.println("Using Iterator");
Iterator itr=list.iterator();
while(itr.hasNext())
{ System.out.println(itr.next()); }

}
}



1.6 Wrapper Class
• Each of Java's eight primitive data types has a class dedicated to it.
• These are known as wrapper classes, because they "wrap" the primitive data

type into an object of that class.
• The wrapper classes are part of the java.lang package, which is imported by default

into all Java programs.
• The wrapper class in Java provides the mechanism to convert primitive into

object and object into primitive.



1.6 Wrapper Class
Autoboxing
• The automatic conversion of primitive data type into its corresponding wrapper class

is known as autoboxing.
• For example, byte to Byte, char to Character, int to Integer, long to Long, float to

Float, boolean to Boolean, double to Double, and short to Short.

Unboxing
• The automatic conversion of wrapper type into its corresponding primitive type is

known as unboxing.
• It is the reverse process of autoboxing. Since Java 5, we do not need to use the

intValue() method of wrapper classes to convert the wrapper type into primitives.



1.6 Wrapper Class
public class WrapperClassExample {

public static void main(String arg[])
{

System.out.println("Autoboxing");
int a=20; //Premetive Data type
//converting premitivve Datatype to object
Integer i=Integer.valueOf(a);//converting int into Integer explicitly

//Converting premitivve Datatype to object automatically
Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally
System.out.println(a+" "+i+" "+j);

System.out.println("Unboxing");
Integer x=new Integer(3); //Object
//converting object to premitivve Datatype
int y=x.intValue();//converting Integer to int explicitly
//converting object to premitivve Datatype automatically
int z=x;//unboxing, now compiler will write a.intValue() internally
System.out.println(x+" "+y+" "+z);

}}


